

ADVANCED GCE UNIT MATHEMATICS

Core Mathematics 3 MONDAY 11 JUNE 2007

Afternoon

4723/01

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [L/102/2710]

OCR is an exempt Charity

[Turn over

1 Differentiate each of the following with respect to *x*.

(i)
$$x^{3}(x+1)^{5}$$
 [2]

(ii)
$$\sqrt{3x^4 + 1}$$
 [3]

- 2 Solve the inequality |4x-3| < |2x+1|.
- 3 The function f is defined for all non-negative values of x by

$$f(x) = 3 + \sqrt{x}.$$

- (i) Evaluate ff(169).
- (ii) Find an expression for $f^{-1}(x)$ in terms of x.
- (iii) On a single diagram sketch the graphs of y = f(x) and $y = f^{-1}(x)$, indicating how the two graphs are related. [3]
- 4 The integral *I* is defined by

$$I = \int_0^{13} (2x+1)^{\frac{1}{3}} \, \mathrm{d}x.$$

- (i) Use integration to find the exact value of I.
- (ii) Use Simpson's rule with two strips to find an approximate value for *I*. Give your answer correct to 3 significant figures. [3]
- 5 A substance is decaying in such a way that its mass, m kg, at a time t years from now is given by the formula

$$m = 240e^{-0.04t}$$
.

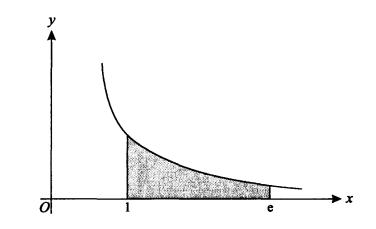
- (i) Find the time taken for the substance to halve its mass. [3]
- (ii) Find the value of t for which the mass is decreasing at a rate of 2.1 kg per year. [4]

6 (i) Given that
$$\int_0^a (6e^{2x} + x) dx = 42$$
, show that $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$. [5]

(ii) Use an iterative formula, based on the equation in part (i), to find the value of *a* correct to 3 decimal places. Use a starting value of 1 and show the result of each iteration. [4]

4723/01 Jun07

[4]


[5]

[2]

[2]

- 3
- 7 (i) Sketch the graph of $y = \sec x$ for $0 \le x \le 2\pi$.
 - (ii) Solve the equation $\sec x = 3$ for $0 \le x \le 2\pi$, giving the roots correct to 3 significant figures. [3]
 - (iii) Solve the equation $\sec \theta = 5 \csc \theta$ for $0 \le \theta \le 2\pi$, giving the roots correct to 3 significant figures. [4]
- 8 (i) Given that $y = \frac{4 \ln x 3}{4 \ln x + 3}$, show that $\frac{dy}{dx} = \frac{24}{x(4 \ln x + 3)^2}$. [3]
 - (ii) Find the exact value of the gradient of the curve $y = \frac{4 \ln x 3}{4 \ln x + 3}$ at the point where it crosses the x-axis. [4]

(iii)

The diagram shows part of the curve with equation

$$y = \frac{2}{x^{\frac{1}{2}}(4\ln x + 3)}.$$

The region shaded in the diagram is bounded by the curve and the lines x = 1, x = e and y = 0. Find the exact volume of the solid produced when this shaded region is rotated completely about the x-axis. [4]

9 (i) Prove the identity

$$\tan(\theta + 60^\circ)\tan(\theta - 60^\circ) \equiv \frac{\tan^2\theta - 3}{1 - 3\tan^2\theta}.$$
 [4]

(ii) Solve, for $0^{\circ} < \theta < 180^{\circ}$, the equation

$$\tan(\theta + 60^\circ)\tan(\theta - 60^\circ) = 4\sec^2\theta - 3,$$

giving your answers correct to the nearest 0.1°.

(iii) Show that, for all values of the constant k, the equation

$$\tan(\theta + 60^{\circ}) \tan(\theta - 60^{\circ}) = k^2$$

has two roots in the interval $0^{\circ} < \theta < 180^{\circ}$.

© OCR 2007

4723/01 Jun07

[2]

[5]

[3]

4723

1 (i)	Attempt use of product rule	M1		• ·			
	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$ A1 2 or equiv						
	[<u>Or</u> : (following complete expansion and differentiation term by term) Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$ B2 allow B1 if one term incorrect]						
(**)		B2		allow B1 if one term incorrect]			
(ii)	Obtain derivative of form $kx^3(3x^4 + 1)^n$	M1		any constants k and n			
	Obtain derivative of form $kx^3(3x^4+1)^{-\frac{1}{2}}$	M1					
	Obtain correct $6x^{3}(3x^{4}+1)^{-\frac{1}{2}}$	A1		3 or (unsimplified) equiv			
2	Identify critical value $x = 2$	B1					
	Attempt process for determining both						
	critical values	M1					
	Obtain $\frac{1}{3}$ and 2	A1					
	Attempt process for solving inequality	M1		table, sketch;			
	Obtain $\frac{1}{3} < x < 2$	A1	5	implied by plausible answer			
3 (i)	Attempt correct process for composition	M1		numerical or algebraic			
U (I)	Obtain (16 and hence) 7	Al	2	numerical of algeorate			
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of y so far			
	Obtain $(x-3)^2$	A1	2	or equiv; in terms of x , not y			
(iii)	Sketch (more or less) correct $y = f(x)$	B1		with 3 indicated or clearly implied on <i>y</i> -axis, correct curvature, no maximum point			
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	B1 B1	3	right hand half of parabola only			
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k			
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv			
	Substitute limits in expression of form $(2x+1)^n$						
	and subtract the correct way round	M1		using adjusted limits if subn used			
	Obtain 30	A1	4				
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k			
	Identify k as $\frac{1}{3} \times 6.5$	A1					
	Obtain 29.6	A1	3	or greater accuracy (29.554566)			
	[SR: (using Simpson's rule with 4 strips)						
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$						
	and hence 29.9	B1		or greater accuracy (29.897)]			

Mark Scheme

4723

5 (i)	State e	-0.04t = 0.5	B1		or equiv
	Attemp	t solution of equation of form $e^{-0.04t} = k$	M1		using sound process; maybe
	Obtain	17	A1	3	implied or greater accuracy (17.328)
(ii)	Differe	ntiate to obtain form $k e^{-0.04t}$	*M1	l	constant k different from 240
		$(\pm) 9.6e^{-0.04t}$	A1		or (unsimplified) equiv
		attempt at first derivative to (±) 2.1 and solution 38	M1 A1	4	dep *M; method maybe implied or greater accuracy (37.9956)
6 (i)	Obtain	integral of form $k_1 e^{2x} + k_2 x^2$	M1		any non-zero constants k_1, k_2
		correct $3e^{2x} + \frac{1}{2}x^2$	A1		
		$3e^{2a} + \frac{1}{2}a^2 - 3$	A1		
	-	definite integral to 42 and attempt	MI		
		ngement n $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$	M1 A1	5	using sound processes AG; necessary detail required
	Comm	$u = \frac{1}{2} \ln \left(15 - \frac{1}{6} u \right)$	211	5	rie, necessary down required
(ii)		correct first iterate 1.348	B1		
	Attemp 2 iterate	t correct process to find at least	M1		
	Obtain	at least 3 correct iterates	A1		
	Obtain	1.344	A1	4	answer required to exactly 3 d.p.; allow recovery after error
		$[1 \rightarrow 1.34844 \rightarrow 1.3438$	$32 \rightarrow 1$.343	
7 (i)		orrect general shape (alternating above	N/1		
	and below <i>x</i> -axis) Draw (more or less) correct sketch	M1 A1	2	with no branch reaching x-axis with at least one of 1 and -1 indicated or clearly implied	
(ii)	Attemp				and the investigation of the second second
		t solution of $\cos x = \frac{1}{3}$	M1		maybe implied; or equiv
	01.	1.23 or 0.392π	A1		or greater accuracy
	Obtain	5		3	or greater accuracy
(iii)	Obtain <u>Either</u> :	1.23 or 0.392π	A1 A1	-	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise
(iii)		1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$	A1 A1	-	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
(iii)		1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1	A1 A1 any	-	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
(iii)		1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π	A1 A1 any A1 M1	con	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage
(iii)		1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$	A1 A1 any A1	-	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage
(iii)		1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring, etc.)	A1 A1 any A1 M1 A1	con	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater
(iii)	<u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio	A1 A1 any A1 M1 A1 M1	con	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater accuracy
(iii)	<u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \ \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value	A1 A1 any A1 M1 A1	con	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant k; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater
(iii)	<u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one value in first quadrant and one value	A1 A1 A1 M1 A1 M1 A1	con	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater accuracy
(iii)	<u>Either</u> :	1.23 or 0.392π 5.05 or 1.61π Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form $\theta, \theta + \pi$ Obtain 1.37 and 4.51 (or 0.437π and 1.44π) (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value Attempt solution at least to find one	A1 A1 any A1 M1 A1 M1	con	or greater accuracy or greater accuracy and no others within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once stant <i>k</i> ; maybe implied within $0 \le x \le 2\pi$; allow degrees at this stage allow ±1 in third sig fig; or greater accuracy

8 (i)	Attempt use of quotient rule	M1		allow for numerator 'wrong way round'; or equiv
	Obtain $\frac{(4\ln x + 3)\frac{4}{x} - (4\ln x - 3)\frac{4}{x}}{(4\ln x + 3)^2}$	A1		or equiv
	Confirm $\frac{24}{x(4\ln x + 3)^2}$	A1	3	AG; necessary detail required
(ii)	Identify $\ln x = \frac{3}{4}$	B1		or equiv
	State or imply $x = e^{\frac{3}{4}}$	B1		
	Substitute e^k completely in expression for			
	derivative	M1		and deal with $\ln e^k$ term
	Obtain $\frac{2}{3}e^{-\frac{3}{4}}$	A1	4	or exact (single term) equiv
(iii)	State or imply $\int \frac{4\pi}{x(4\ln x + 3)^2} dx$	B1		
	Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$			
	or $k(4\ln x + 3)^{-1}$	*M1	l	any constant <i>k</i>
	Substitute both limits and subtract right way			
	round	M1		dep *M
	Obtain $\frac{4}{21}\pi$	A1	4	or exact equiv
9 (i)	Attempt use of either of $tan(A \pm B)$ identities Substitute $tan 60^\circ = \sqrt{3}$ or $tan^2 60^\circ = 3$	M1		
	Substitute $\tan 60^{\circ} = \sqrt{3}$ of $\tan 60^{\circ} = 3$	B1		
	Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$	A1		or equiv (perhaps with tan 60 $^\circ$
				still involved)
	Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$	A1	4	AG
(ii)	Use $\sec^2 \theta = 1 + \tan^2 \theta$	B1		
(11)	Attempt rearrangement and simplification of	DI		
	equation involving $\tan^2 \theta$	M1		or equiv involving $\sec\theta$
	Obtain $\tan^4 \theta = \frac{1}{3}$	A1		or equiv $\sec^2 \theta = 1.57735$
	Obtain 37.2	A1		or greater accuracy
	Obtain 142.8	A1	5	or greater accuracy; and no others between 0 and 180
(iii)	Attempt rearrangement of $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta} = k^2$ to form			
	$\tan^2 \theta = \frac{f(k)}{g(k)}$			

Obtain
$$\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$$

Observe that RHS is positive for all *k*, giving one value in each quadrant

A1 3 or convincing equiv

A1